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A method of designing thin-walled glass-reinforced plastic (GRP) systems with two-way reinforcing for creep was
proposed in [1,2]. The results of an experimental verification of this method by testing square plates in pure torsion and
beams in bending are given below.

Conditions of pure torsion can be realized by two methods: a uniformly distributed torque H can be applied at the
ends or the specimen can be loaded as shown in Fig. 1, where the load P = 4H [3-5]. In the latter case, pure torsion
(pure shear, nonhomogeneous over the thickness) is obtained throughout the plate with the exception of the edge zone.
This singularity will, however, be disregarded in the calculations.

The boundary conditions are

M,=0 at =0, r=ugq; M, =0 at y=0,y=a, Qx, y, t)=0
w(0,0)=0 w(a, a) =0; w(a, 0)=w (0, a),
Hy,=H(@) at z=0, z=gq; y=0,y=a (t=time) .

The deflection is sought in the form

w=A(@)at+B@)ay+CH ¥+ Ci(0z+Cy+Colt) -

The stress-strain relation is postulated in the form
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where oy, Oy, Txys Exs Exs ¥xy 21€ the stresses and engineering strains along the principal axes of anisotropy x and y;
G is the instantaneous shear modulus; x is a dimensional constant; I' is the gamma function; and G is the creep opera-

tor [6].
The deflection equation and the expressions for the bending and torsional moments
are the same as in [1]. By employing the boundary conditions and Egs. (1), we obtain
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Two square plates of GRP AG-4s with identical reinforcing along the x and y axes
were tested by the method shown in Fig. 1 at loads varied in steps and a constant tem-
perature of 30°C. The total deflection at the points L (x = 10 mm, y = 230 mm) and
M (x =230 mm and y = 10 mm) was measured with a simple indicator device with
0. 01 mm graduations. The plate dimensions were a = 240 mm, h = 5.84 mm for the
first plate, and h = 5.75 mm for the second.

Both plates were initially subjected to creep at constant load and then allowed to recover in the unloaded state; when
the recovery rate became sufficiently small, the plate was turned over and loaded with the same force, which resulted in
a change in the sign of the stress. Hence, the loading schedule was as follows:

P=P, for 0<t<t;y, P=0 for 1 <t<ty, P=—Py for <t . (3)

Since the relation between the stresses and creep strains is practically linear [2], as confirmed by experiments on
specimens cut out of the plates after testing and relaxation, the linear memory theory can be verified directly from the
curves of variation in deflection at the points L and M. In the first part of schedule (3) the creep curves were approximat-
ed by the function

w(t) = w® - f10-28 >h
Moreover, theoretical curves were plotted by means of the principle of superposition:

w(t)=f[1"8 —(t—0)"B] for H<t<ts
‘ €]
w(l)=f [0 — (1 — )% — (¢t — 1)0%] —w for £>1ty.
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For the first plate the load changing times and constants were: t; = 600 hours, t, = 772 hours, Py = 6.720 kg, f =
=0.24, w°®=2.92 mm, and for the second: t; = 600 hours, t, =672 hours, Py = 5.800 kg, f=0.32, and w’= 3. 02 mm.
The agreement between the experimental points in Figs. 2 and 3 and the theoretical curves plotted from Eq. (4) is satis-
factory.

A third plate was tested by the same procedure (Fig. 1, h =6 mm) at a

constant load P = 7,550 kg, After one month's relaxation at a test tem- ¢ mm

perature of 30°C, followed by three months at room temperature, it was o ‘

cut into four beams whose longitudinal axes formed angles ¢ = 0, 22,5, 2 :

45 and 90°with one of the reinforcing directions. These beams (length L‘uo thr
200 mm, width b = 25 mm) were then supported on prisms (spacing 0 i i S
I = 185 mm) and loaded with a constant load Py =4 kg in the center

of the span. Since the superposition principle is fulfilled with a suffici- -2

ent degree of accuracy, it can be assumed that after relaxation the h%‘mm
plate returned practically to its starting state, The experiments carried -4

out at ¢ = 0, 90 and 45° are regarded as basic; the creep of the beam

at ¢=22.5° and the creep of the plate (out of which these beams were Fig. 2.

cut) in pure torsion are predicted from the same results. The deflec-
tions of the beams at ¢ = 0 and 90° turned out to be close and in the computations were assumed to be identical and
equal to the average value.

The results of the basic experiments (circles) and their approximarion on
the basis of S. G. Lekhnitskii's hypotheses [2] are shown in Fig. 4. The curve
for ¢ = 45° is derived directly from the experimental data. The values for the

o W IIIL oooony | deflection aiiqﬁ =0° (90°_) were approximated by a.straigh't line drawn through
Fc’ the point [t = 30 hours, w = w(30)] parallel to the time axis.
Z ‘ The formula for the deflection of a beam W s CUL OUL at an angle ¢,
¢t hr under a constant load can be written as
[4
400 400 1200
P34 P8 o c
by = E T -1=""_1¢ e, ()] 5

~ o ey + e (0] 5)
-4 20090 0 g g where Eg, s the creep operator in the direction ¢ [2]; the creep strains de-

scribed by this operator satisfy the relation

E¢'1 A=seo=e1c08* ¢+ Ya [y (t5 - 2m] sin® 2¢ g2 sin 2@ . (6)

Fig. 3. where ey and g, are the strains in the principal directions for unit tensile (com -

_ pressive) stress; y(t) is the shear strain for unit shear stress along the principal
axes x and y; wy is the transverse strain for unit tensile (compressive) stress acting along the x axis; € is the longitudinal
strain along an axis forming an angle ¢ with the x axis for unit tensile (compressive) stress; it is composed of elastic and
creep components:

€y = Eq €
15 5
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Fig. 4.

In accordance with the accepted approximation there is no creep in the x and y directions, while the strains e, and &,
for constant stress are assumed equal to the experimental values at t = 30 hours. The values of the width, thickness and
load for the individual beams mentioned above differed somewhat; hence the expressions for each angle are written as
follows:

¢ =0° (90°), > wyp=1.17.10%, ,
@ = 45°, gy = 1.20-10%;s = 1.2.102 [e;5'+ g5}
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P=122.5°,  wyn=1.19-10%z = 1.19-10% [, +- &,5 (£)].
For ¢ = 45°and ¢ = 22.5° (with g, =&4 ) it follows from (8) that
£45 = 0.5e1 4 0.25 [1 (£} + 201], &2z = 0.75e; + 0.425[7 (¢) -+ 201). N
Therefore
By = 0.5 (61 + £55), &,5(t) =0.5e,° (%) . (%)
Equation (8) enables us to calculate the change in deflection for ¢ = 22, 5° from the data for beams with ¢ = 0°
(90°)and ¢ = 45° ., The results of this calculation are represented by the lower curve in Fig. 5 (both the theoretical

curve and the experimental points correspond to tripled values of the deflection wy,). The agreement is completely

satisfactory.,
W
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Fig. o. )

The behavior of the starting plate in pure torsion was calculated analogously from the basic experiments (¢ = 0, 90,
1 45°).

It follows from (7) that
To = 4g45° — 281 — 201, ’}'C (2) = 48450 (t) .

In accordance with the experimental data [2], vy can be taken as equal to 0. 07; then wy = —VUeq = — 0,07 g4. M
Moreover, in (2) we put G =y°® +y€(t) and numerical values for the coordinates of the point L as well as the force Py =
= 4H and the thickness of the plate. The results of the computation are represented by the upper curve in Fig. 5; its
deviation from the experimental points does not exceed 8%.

Hence, it can be concluded that the mathematical model of a glass-reinforced plastic presented in [2] satisfactorily
describes the behavior of the actual material.
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