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A method of designing thin-walled glass-reinforced plastic (GRP) systems with two-way reinforcing for creep was 
proposed in [1, 2]. The results of an experimental  verification of this method by testing square plates in pure torsion and 
beams in bending are given below. 

Conditions of pure torsion can be realized by two methods: a uniformly distributed torque H can be applied at the 

ends or the specimen can be loaded as shown in Fig. 1, where the load P = 4H [3-5]. In the latter case, pure torsion 

(pure shear, nonhomogeneous over the thickness)is obtained throughout the plate with the exception of the edge zone. 

This singularity will, however, be disregarded in the calculations. 

The boundary conditions are 

M x = O  at x = O ,  x = a ;  M u ' ~ O  at y = O ,  y ~ - a ,  Q(x, y, t ) = O  

W(0, 0) = 0  w(a, a) = 0 ;  w(a, 0) = w ( 0 ,  a), 
Hxu = H ( t )  at x = O ,  x = a ;  y = 0 ,  y = a  ( t = t i m e )  . 

The deflection is sought in the form 

w = A (t) x ~ q- B (t) xy  + C (t) y2 + C1 (t) x -1- C~ (t) y -I- Co (t) �9 

The stress-strain relation is postulated in the form 

l v~ vl t 

t 

' "[ l 1 "rxu = g- "r,~u = ~ "~xu + X I" (1 + ct) ~xu (0) dO, 
0 

where Ox, Cry, rxy, Sx, s x, 7xy are the stresses and engineering strains along the principal axes of anisotropy x and y; 
G is the instantaneous shear modulus; X is a dimensional  constant; F is the gamma function; and G is the creep opera-  

tor [6]. 

Fig. 1. 

The deflection equation and the expressions for the bending and torsional moments 
are the same as in [1]. By employing the boundary conditions and Eqs. (!), we obtain 

6[ a ] ,  
w = - - - ~  ~ y  - -  - -g-  ( z  + y)  - -6-  H (t) (2) 

Two square plates of GRP AG-4s with ident ical  reinforcing along the x and y axes 

were tested by the method shown in Fig. I at loads varied in steps and a constant t em-  

perature of 30"C. The total  deflection at the points L(x = 10 mm,  y = 230 mm) and 
M (x =230 mm and y = 10 ram) was measured with a simple indicator device with 

0.01 mm graduations. The plate dimensions were a = 240 mm,  h = 5.84 mm for the 

first plate, and h = 5.75 mm for the second. 

Both plates were in i t ia l ly  subjected to creep at constant load and then allowed to recover in the unloaded state; when 

the recovery rate became sufficiently small,  the plate was turned over and loaded with the same force, which resulted in 

a change in the sign of the stress. Hence, the loading schedule was as foliows: 

P = P o  for O < t < h ,  P = - 0  for h < t < t ~ ,  P = - - - P o  for h ~ . t  . ( 3 )  

Since the relation between the stresses and creep strains is practically l inear [2], as confirmed by experiments on 

specimens cut out of the plates after testing and relaxation, the linear memory theory can be verified directly from the 

curves of variation in deflection at the points L and M. In the first part of schedule (3) the creep curves were approximat- 

ed by the function 

w (t) = w ~ + / t  ~ > t l  

Moreover, theoretical curves were plotted by means of the principle of superposition: 

W (t) ~-- ] [/0.28 __ (t - - / 1 )  0"23] for h < t < t~ 
(4) 

w ( t ) . =  ] [ t  ~ - -  (t - -  ta) ~ - -  (t - -  t~) ~ - -  w ~ for t > t2. 
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For the first plate tim load changing t imes  and constants were:  t 1 = 600 hours, t 2 = 772 hours, P0 = 6. 790 kg, f = 

= 0 .24,  w* = 2 .92  m m ,  and for the second:  t l  = 600 hours, tg. = 672 hours, P0 = 5. 800 k g ,  f =  0 .32 ,  and w*= 3 .02  ram. 

The ag reemen t  be tween  the expe r imen t a l  points in Figs. 2 and 3 and the t heo re t i ca l  curves plotted from Eq. (4) is saris-  

factory.  

A third plate was tested by the same procedure (Fig. 1, h = 6 m m )  at a 
constant load P = 7. 550 kg. After  one month ' s  re laxa t ion  at a test te/-n- 4 zo m m  

perature of 30~ fol lowed by three months at room tempera tu re ,  it was i ~ 

cut into four beams whose longi tudinal  axes formed angles q0 = 0, 22 .5 ,  2 ~ 

45 and 90~ one of the reinforcing direct ions.  These beams ( length 
i 

200 m m ,  width b = 25 m m )  were then supported on prisms (spacing 0 
400 l = 185 m m )  and loaded with a constant load P~ =4  kg in the center  

of the span. Since  the superposition pr incip le  is fu l f i l led  with a suff ic i -  -2 . .  

ent  degree  of accuracy ,  i t  can be assumed that  af ter  re laxa t ion  the 

plate  returned p rac t i ca l ly  to its start ing s tate .  The exper iments  carr ied -4  

out at ~o = 0, 90 and 45 ~ are regarded as basic; the c reep  of the b e a m  

at ~o= 22 .5  ~ and the c reep  of the plate (out of which these beams were 

cut)  in pure torsion are predic ted  from the same results. The  d e f l e c -  
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Fig.  2. 

tions of the  beams  at ~0 = 0 and 90 ~ turned out to be close and in the  computa t ions  were assumed to be iden t i ca l  and 

equa l  to the average  value.  
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Fig.  3. 

The results of the basic exper iments  (c i rc les)  and their  approximat ion  on 

the basis of S. G. Lekhnitskii 's  hypotheses [ 2 ]  are shown in Fig. 4. The  curve 

for qo = 45* is der ived d i rec t ly  from the e x p e r i m e n t a l  data.  The values for the 

de f l ec t ion  at ~o = O ~ (90 ~ were approximated  by a straight l ine  drawn through 
the point [t = 30 hours, w = w(30) ]  pa ra l l e l  to the t i m e  axis.  

The  formula  for the  de f l ec t ion  of a beam wq) , cut out at an angle  ~o, 

under a constant load can be Written as 

Pll  3 Pl l  ~ 
u ' q ~ = ~  E~ -1 �9 t = 4bh a [e~~ + 8 c (t)] , (5) 

where E~0-1 is the  c reep  operator  in the d i rec t ion  ~o [2]; the c reep  strains de -  

scribed by this operator  satisfy the re la t ion  
/ 

E~ -1 �9 1 = e~ = el cos 4 q) + 1/4 [T (t) @ 2r sin ~ 2r -]- e2 sin" 2(p , (6) 

where e I and s 2 are the strains in the  pr incipal  direct ions for unit t ens i le  ( c o m -  

pressive) stress; y( t)  is the shear strain for unit shear stress along the  pr incipal  

axes x and y; w 1 is the transverse strain for unit tens i le  (compress ive)  stress act ing along the  x axis; s~o is the longi tudinal  

strain a long an axis forming an angle  ~0 with the  x axis  for unit tens i le  (compress ive)  stress; i t  is composed of e las t ic  and 
c reep  components :  
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Fig. 4. 

In accordance  with the  accep t ed  approx imat ion  there  is no c reep  in the x and y d i rec t ions ,  wl~tle the strains e 1 and e~ 

for constant  stress are  assumed equa l  to the  e x p e r i m e n t a l  values  at t = 30 hours. The  values  of  the width,  thickness and 

load for the ind iv idua l  beams  men t ioned  above differed somewhat ;  hence  the expressions for each  angle  are wri t ten as 
follows: 

q~ =* 0 ~ (90~  ' wl = 1 . t 7 . 1 0 s s x  , 

- 4 5  ~ w,5 = 1.2o. io,~4s --  i .2. ioa [ ~ . +  ~ (t)] ,  

1 3 2  



For <p = 45 ~  ~o = 

Therefore  

o 

q) = 22.5 ~ w22 = t.19.103e~ = 1.t9.103 [~22 -b e2~ (t)]. 

22.5  ~ (with s t  =~a ) it follows from (6) that  

~45 = 0.5el q- 0.25 [7 (t) q- 2o~1], ~.~= = 0.75~1 q- 0.12517 (t) q- 2c0~]. 
U) 

o o C 

g22 = 0 . 5  (s -~- ~45)' e2~(t) ~--- 0.5 845 (t) . ( 8 )  

Equation (8) enables  us to c a l c u l a t e  the change in de f l ec t ion  for ~0 = 22 .5  ~ from the data  for beams  with ~0 = 0 ~ 

(90 ~ and ~a = 45" . The results of this ca l cu la t ion  are represented by the lower curve in Fig.  5 (both the t heo re t i ca l  

curve and the e x p e r i m e n t a l  points correspond to t r ipled values of the de f l ec t ion  w22), The  ag reemen t  is c o m p l e t e l y  
sat isfactory.  
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Fig.  5. 

The behavior  of the start ing plate  in pure torsion was ca lcu la ted  analogously from the basic exper iments  (qa = 0, 90, 
�9 45~ 

tt fol lows from (7) that 

"r ~ = 4~5 ~ -- 2~1 - -  2a, ,  "r c (t) = 4~4~ ~ (t) .  

In accordance  with the  e x p e r i m e n t a l  data  [2], v 1 can be taken as equa l  to 0.07;  then w 1 = - - / J l g l  = - 0. 07 e I. M 

Moreover ,  in (2) we put G-1 = 7~ + Tc ( t )  and n u m e r i c a l  values for the coordinates  of  the point L as we l l  as the force Pl = 

= 4H and the thickness of the p la te .  The results of  the computa t ion  are represented by the upper curve  in Fig.  5; its 

dev ia t ion  from the  e x p e r i m e n t a l  points does not exceed  8%. 

Hence ,  it can be conc luded  that the m a t h e m a t i c a l  mode l  of a g lass - re inforced  plast ic presented in [2] sat isfactor i ly  

describes the behavior  of the ac tual  ma te r i a l .  
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